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A method is described for the fast and efficient numerical evaluation of the general 
free-election lattice Green’s function in the r representation. This is useful for the solu- 
tion of the general unrestricted energy-band problem and for applying the coherent- 
potential approximation in obtaining the electronic structure of realistic models of 
substitutionally disordered alloys. 

1. INTRODUCTION 

The most familiar use of the free-electron lattice Green’s function is in the 
multiple scattering approach to electronic band structure calculations [l, 21. In 
the usual procedure the crystal potential is approximated in the “muffin tin” 
manner, i.e., only the spherical contributions around each atomic site are kept. 
The potential is then spherically symmetric within the inscribed sphere of the atomic 
polyhedra and constant outside these spheres. Using this approximation, the 
Schroedinger equation can be integrated. The results are cast into the form of a 
determinant which is a function of the energy, and the zeroes of this determinant 
yield the band energies. The muffin-tin approximation yields a tractable numerical 
problem and the procedure works well for metals, including d-band transition 
metals [3]. However, for compounds which have a large amount of covalency 
involved in their bonding, the muffin-tin approximation is not expected to be valid 
and a more general approach is necessary. A general approach incorporating the 
free-electron lattice Green’s function may involve iterative methods [4] or the use 
of a basis set [5]. The advantage of a general Green’s function method is apparent 
when a basis set is used, because the basis set need be only large enouth to describe 
the states in the energy range of interest and the core states can be ignored. 
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Another application for which the free-electron lattice Green’s function is 
necessary is in the application of the coherent-potential approximation in substi- 
tutional alloys [6]. The need for the general Green’s function is independent of 
any approximation made in the potential. 

The disadvantage of using the general Green’s function is that it is a complicated 
function of the energy, which must be searched for the location of roots which 
yield the eigen-energies of the problem. The Green’s function must be evaluated 
many times in a computationally fast and efficient way for a tractable numerical 
scheme to be developed. This paper presents a method of calculating the free- 
electron lattice Green’s function in the r representation. It is fast and efficient 
enough to make the other problems mentioned tractable. Section II of this paper 
contains the form of the Green’s function that will be used. Section III presents 
the evaluation techniques and Section IV the results including error analysis and 
timing on a Control Data 6400 computer. 

2. THE GREEN’S FUNCTION 

The Green’s function is defined by 

(- V,2 - E) G(r, r’) = --6(r - r’) (2.1) 

so 

Y(r) = 1 G(r, r’) V(r’) Y(r’) d3r’ (2.2) 
21 

where Y(r) is the wavefunction for the crystal and satisfies the Bloch condition 

Y(r + RJ = eik’R.sY(r), (2.3) 

V(r) is the periodic crystal potential, 

W + R3 = W, (2.4) 

v is the volume of the unit cell in r space, k is the crystal momentum and R, is a 
direct lattice vector. The Green’s function can be written 

G(r, r’) = - i c 
exp[i(K, + k) * (r - r’)] 

11 (K,, + k)2 - E ’ 

where K,, are reciprocal lattice vectors, or in the alternative form 

G(r, r’) = - -& 1 
exp[iK I r - r’ - R, I] 

1 r - r’ - R, 1 
exp(ik * RJ. (2.6) 

s 
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Here 
K = +E’P 3 E>Q 

K = i(-E) E<O 
(2.7) 

It is also apparent from (2.5) or (2.6) that 

and that 

G(r, r’) = G(r - r’) (2.8) 

the Hermitian property. 

G(r’ - r) = G*(r - r’), (2.9) 

It is evident that neither (2.5) or (2.6) is an appropriate form for the numerical 
evaluation of G(R), (R = r - r’), because of the slow convergence of either 
series. Recognizing this, Ham and Segall [7] applied the Ewald technique [8] to 
improve the convergence and obtained 

where 

and 

where 

G(R) = G,(R) + G,(R) 

1 G,(R) = -;I exp[i(k + L) * RI exp{ - Kk + LY - El/~1 
m (k + KnJ2 - E 

G,(R) = - q c e’“‘R8Z(E, 1 R - R, [) 
s 

Z(E, I R - R, I) = Jrn exp[- 1 R, - R 12p2 + E/4p2] a” 
;G 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

and 77 > 0 is the Ewald parameter which is chosen to minimize computation time 
as will be seen later. Equations (2.10), (2.1 l), and (2.12) give the form in which 
the Green’s function will be evaluated here. The integral Z(E, 1 R - R, 1) given 
by 2.13) is the most difficult quantity to evaluate rapidly. It is encountered in each 
term of the sum on R, and its rapid evaluation is at the core of any fast Green’s 
function evaluation method. Its appearance in the sum over R, and the necessity 
of calculating G(R) over a large grid of R values (for each E value) for numerical 
integration, make essential the separation of the E and R dependences and the 
extremely rapid evaluation of I for a given R. The other terms require only the 
evaluation of the exponential function and algebraic manipulations. 
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3. EVALUATION TECHNIQUE 

In this section we consider the integral Z(E, ] R I), given by (2.13). This can be 
rewritten 

ew[--x2t2 + ~45~1 df (3.1) 

where x = + 4111 R - R, 1 and y = E/q. This integral can be evaluated exactly 
in terms of the complex complimentary error function [9]: 

Z(x, y) = %T - {e2*“[erfc(x + b)] + e-2b0[erfc(x - b)]} (3.2) 

where 

Note that 

b=ifi, Y>O 
(3.3) 

d-v, Y<O 

liiZ(x, y) = 9 (3.4) 

This displays the singularity of the Green’s function which occurs when 

r - r’ = R, (3.5) 

If the range of integration over r and/or r’ is restricted to the first primitive cell as 
in (2.2) the singularity occurs only in the R, = 0 or first term of the sum in (2.12) 
and only for r = r’. This situation can be handled by volume averaging as described 
below. 

Since (3.2) is not a suitable form for the rapid numerical evaluation of Z(x, y) 
because of the complex arithmetic and the mixing of x and y dependences, a 
different, more direct method has been divised. When working in the r represen- 
tation the Green’s function will need to be evaluated most frequently as a function 
of 1 R 1 = r - r’(or x) and as a function of E (or y). The method adopted was to 
use a Taylor series expansion in x about a suitable number of expansion points 
{xi}. The method for choosing the {xi} will be described later. The coefficients at 
one of the expansion points are functions of y and x, but the dependences on these 
parameters can be separated and much of the calculation can be done once and 
for all after the set {xi} is chosen. The details of this technique are now given. 
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The Taylor series expansion was made of the function J(x, y), defined by 

in the form 

Z(x, y) = 2 e-**.qx y) 3 3 (3.6) 

where 

zmax 

4x, u> = 1 A& - XiY (3.7) 
1=0 

xi + xi-1 xi+1 + xi 

2 
-<x< 

2 ’ 
i = 0, I,2 )...) z&x ) (3.8) 

and where 

(3.10) 

For any x the closest xi is found and the associated expansion is then used. The 
singularity (l/x) is removed to enable an expansion around x = 0 to be made. The 
exponential term (es*) is removed to simplify the procedure for obtaining the 
derivatives J”(xJ as will be seen below and to account somewhat for the asymptotic 
behavior of the integral and enable the expansion to be more accurate. The point 
x = 0 is always included in the set of points around which the expansions are made, 
i.e., x0 = 0, even though all the x > 0. This is because behavior of .Z(x, y) around 
x = 0 is the hardest to approximate accurately. To obtain the derivatives of 
J(x, y) we just rewrite it in the form 

J(x, y) = 2 ez2Z(x, y) 
+I 

and use the expression for Z(x, y) given by (3.2). Using 

d &c(f) = 2 e-f2 

d.f d?i- 
we obtain 

(3.12) 

g [xZ(x, y)] = -4y[xZ(x, y)] + x 4; e-(ze-t) (3.13) 

Using (3.11) this can be transformed into 

-f& J(x, y) - 4x -& J(x, y) + 2[2(x2 + y) - l] J(x, v) = 2xe’. (3.14) 
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Taking (I - 2) derivatives of (3.14) and using the definitions (3.10) and (3.9), we 
obtain 

for I > 4, 

4.i = ~Xi(&, - Ao,i) - $2(x? + y) - 31 Alsi + 2e”, 

(3.15) 

and 

k&i = 2xi& - [2(x? + y) - I] LFI,,~ + xieZ’ 

The initializing values for this set of recursion relations are 

A,,i = J’yx~y) and A,*i = J’l’(Xi , y). 

(3.16) 

(3.17) 

(3.18) 

Thus the coefficients of the expansion (3.7) can be evaluated at each energy using 
this recursion technique. 

In order to be able to store as much of the calculation as possible in tables, it 
is useful to effect a separation of the energy and position dependence of the 
initializing values given in (3.18). A method of doing this first considered by 
Davis [IO] is the method chosen here. The essence of this method is to expand the 
term involving y in the integral given in (3.1). Using (3.1 l), we obtain 

and 

s lm ‘ii: df = y F(1/2 - m,  x2) 

(3.19) 

where F(1/2 - m, x2) is the incomplete Gamma function [l I]. It is convenient to 
define 

so 

f( l/2 - m,  x2) = ex*x2”r(1/2 - m, x2) (3.21) 

J(x, y) = i t $f(1/2 - m,  x2). 
nZ=O 

Now we have the continued fraction expansion [12] 

(3.22) 

x (m + l/2) 1 (m + 3/2) 2 f(1/2 - m,  x2) = - 
x2+ If x2+ If x2+“’ (3.23) 
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for x > 0, 1 l/2 - m 1 < co. This expansion doesn’t converge at x = 0; therefore, 
at that point another procedure must be used. We observe that 

f(1/2 - m, 0) = r(1/2) L.0 = 4; h.0 (3.24) 

so 

A,,, = &i/2. (3.25) 

To obtain the second initializing value A,,, one must take the derivative of (3.21) 

-j-f(l/2 - m, x2) = (1 + $-) (2x)f(1/2 - m, x2) - 2. (3.26) 

This can be substituted into (3.22) to obtain 

$ J(X, y) = (2~) J(X, U) - ev + $ fl cmc l)! fw - my ~2). (3.27) 

Now using the expansion [13] 

fW - m, x2) = exp(x”) [W2 - ml x2m - x Z, (n + $2xym, n, ] (3.28) 

In the last term of (3.27), taking the limit as x --f 0 and using the definitions (3.18) 
and the result (3.25) we obtain the simple expression 

Equations (3.25) and (3.29) are used to obtain the initializing values of the Alsi’s 
at x = x0 = 0. For the other xf # 0, we use (3.23) substituted into (3.22) and 
(3.27). 

The expression (3.23) for f(1/2 - m, x2) can be simplified for computational 
purposes by putting it into a sum-of-products form and using a recursion formula. 
Using standard results [14] (3.23) can be written 

f(1/2 - m, x2) = C Pi 
i=l 

(3.30) 

where 

P( = fi pj 

j=l 

(3.31) 
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and the recursion relation for pi is 

where 

1 
1 + fj = 1 + rJJ1 + pi-J 

rj = $.i (j - 1 + mhd 

(3.32) 

(3.33) 

forj > 1 and the initializing values of pi are 

and 

Pl = llx (3.34) 

(3.35) 

If the sum in (3.30) is terminated at i = n, the relative accuracy is determined by 
the size of ( P,/P,,-, I. 

Recapitulating, once the set {xi} is chosen the values of f(l/2 - m, xi”) are 
determined by (3.30) using (3.31), (3.32), (3.33), (3.34), and (3.35). These are stored 
in tables and called when E is changed to determine the coefficients A,,i in (3.7). 
Thus the time consumed in their calculation is relatively unimportant. Using (3.22) 
and (3.18) we obtain 

A,,i = i 2 $f(l/2 - m, x?), 
m=o . 

(3.36) 

where the special case for A,,, is given by (3.25). Also using (3.27) and (3.18) 

Alsi = (2xJ A,,* - ev + (3.37) 

where the special case Al,, is given by (3.10). Note that the sums in (3.36), (3.37), 
and (3.29) can run concurrently to reduce computational time. Once these initial 
values are determined (3.15), (3.16), and (3.17) can be used to generate the other 
Alsi . For fixed energy the integral Z(x, v) is rapidly calculated using (3.7) and (3.6); 
for a change in the energy the Alsi must be recalculated but much of this calculation 
can be looked up in the stored tables. 

For the Taylor series of (3.7), ImaX = 8 yields 6 place accuracy for Z(x, y). The 
number of expansion points, xi, is determined by the asymptotic behavior of 
Z(x, y) for large x. In the computer program used to generate the tables, expansion 
points were added until the asymptotic formula indicated a value for Z(x, JJ) which 
was smaller than 10-20, which gave imax = 28 and a range of 0 < x \( 6.875. 
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The programs, of course, have provisions for modifiying these values. For 
such values of X, a great deal of latitude in choosing y is possible without 
sacrificing convergence. The expansion (3.22), however, is an expansion in y = E/q 
and the energy range of interest is -1Ry < E < lRy, so 7 is somewhat restricted 
if this series is to converge. In the calculation here (3.22) was truncated after 15 
terms; this yielded a relative error of <1O-Q for the worst case, E = - 1.0. It 
may seem odd that we regard E = -1.0 as worst case, since then the expansion 
gives an alternating series. The reason for this usage is that in the expansion 
technique used here, the limit on accuracy is determined by the convergence 
of the sums giving the initializing values, and these converge must slowly for 
negative E. We found that these sums ceased to converge in 15 terms for E = - 1 
and 7 less than about 0.2 or 0.3. With all these considerations an evaluation time 
for 1(x, y) of 109 microseconds was obtained on the CDC 6400. 

Since the Green’s function is singular as described by (3.4) and (3.5) and the 
singularity is integrable, its effect in integrals such as (2.2) can be accounted for by 
simple volume averaging. In any numerical integration scheme each point is 
assigned a weight which is essentially the volume per point. It is this volume over 
which the singular term of the Green’s function (and the potential if necessary) 
must be averaged in (2.2). This is quite straightforward for three-dimensional 
integrals such as (2.2); however, if the integrals become six dimensional, which 
happens when a basis set is assumed for band structure calculation, the averaging 
becomes somewhat complicated and is described in detail elsewhere [15]. 

The evaluation of the runs over the reciprocal lattice in (2.11) and the direct 
lattice in (2.12) involves the evaluation of the exponential, sine and cosine functions 
in addition to the integral (2.13). The evaluation time for the exponential was 
36 psec and for the sine and cosine calculated together was 116 psec on the 
C.D.C. 6400 using programs especially designed for speed. The number of terms 
kept in these lattice runs depends on their relative evaluation times and thus on the 
choice of y and the accuracy to which the Green’s function must be evaluated. 

The next section contains the results of timing runs for various values of the 
relevant parameters for several different lattices. 

4. RESULTS 

Timing runs were made for a number of typical crystal structures. For each 
structure, one general k value was chosen, since the timing doesn’t depend on k. 
Then for a number of positions in the primitive cell and for the energies E = + 1, 
0, - 1 Ry timing runs were made for a range of 7 values, 1.2 > 7 > 0.2. For each 
position, energy, and 7, the number of direct and reciprocal lattice vectors necessary 
to give the direct and reciprocal lattice partial sums contribution to at least six 



EVALUATION OF FREE-ELECTRON LATTICE 359 

places were determined as were the separate times for each series. The best 17 was 
then chosen on the basis of mjnimum total time. This should represent fairly well 
the shortest evaluation time for at least six-place accuracy over the whole primitive 
cell and for the entire energy range of interest, i.e., the range from --I to +I Ry. 

TABLE I 

Results of Timing Runs 

Lattice Best 7 
Number 

direct Shell 
Number 

reciprocal Shell 
Time 

(m set) 

SC .6 57 5 123 8 74 

bCC .8 89 7 177 9 67 

fee 1.0 79 5 137 9 60 

hcp .8 155 15 135 1.5 90 

Column two gives the best r) for the most rapid evaluation of the Green’s function to obtain 
at least six-place accuracy anywhere in the primitive cell. Columns three and four give the number 
of direct lattice vectors, including the origin, and the corresponding number of shells needed, 
respectively; columns five and six give the same information for the reciprocal lattice vectors; 
column seven gives the average time to evaluate the Green’s function at one position (on the 
C.D.C. 64001. 

Table I gives the results of the timing runs for the various crystal structures 
considered, simple cubic, body centered cubic (bee), face centered cubic (fee), and 
hexagonal close packed (hcp). The cubic lattice parameter was taken to be 6 
atomic units as was the C-axis length in the hcp case. Such lattice parameters are 
typical of those found in real crystals. The direct and reciprocal lattice vectors 
were obtained with a special program that produced the vectors and arranged them 
in order of increasing length [16]. The best rl for the most rapid evaluation of the 
Green’s function while obtaining at least six-place accuracy at a general point 
in the primitive cell is given in the second column of the table. The third column 
gives the number of direct lattice vectors, including the origin, needed for con- 
vergence. The fourth column gives the number of shells of vectors of equal length 
to which this number corresponds. Columns five and six give the same information 
about the necessary number of reciprocal lattice vectors. The last column of Table I 
gives the total time in milliseconds needed to evaluate the Green’s function at one 
position. The uncertainty in this number arises from variations in the servicing 
and accessing periods of the system clock. The numbers in Column 7 are the result 
of averaging the times of ten calculations of the same numbers. The H.C.P. case 
takes longer than the rest because the H.C.P. lattice contains two atomic sites in 
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the primitive cell whereas the other lattices contain only one. These times are given 
for the greatest accuracy that would probably ever be required to, for example, 
obtain a f5nal value for a band energy. In searching for the rough location of such 
an energy one would probably need only four-place accuracy. The time necessary 
for four-place accuracy is on the average about a third of that necessary for six 
places. The numbers given here for the C.D.C. 6400 computer, of course, are 
quite machine-dependent, thus timing runs should be redone when using a 
different machine. 

The method of evaluating the free-electron lattice Green’s function given here 
appears to be fast and accurate enough to make numerically tractable calculations 
on real crystal systems. It is expected that it will be useful in a variety of solid state 
physics problems. 
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